# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see . import random from deap import base from deap import creator from deap import tools creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) toolbox = base.Toolbox() # Attribute generator toolbox.register("attr_bool", random.randint, 0, 1) # Structure initializers toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 100) toolbox.register("population", tools.initRepeat, list, toolbox.individual) def evalOneMax(individual): return sum(individual), # Operator registering toolbox.register("evaluate", evalOneMax) toolbox.register("mate", tools.cxTwoPoints) toolbox.register("mutate", tools.mutFlipBit, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) def main(): random.seed(64) pop = toolbox.population(n=300) CXPB, MUTPB, NGEN = 0.5, 0.2, 40 print "Start of evolution" # Evaluate the entire population fitnesses = map(toolbox.evaluate, pop) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit print " Evaluated %i individuals" % len(pop) # Begin the evolution for g in range(NGEN): print "-- Generation %i --" % g # Select the next generation individuals offspring = toolbox.select(pop, len(pop)) # Clone the selected individuals offspring = map(toolbox.clone, offspring) # Apply crossover and mutation on the offspring for child1, child2 in zip(offspring[::2], offspring[1::2]): if random.random() < CXPB: toolbox.mate(child1, child2) del child1.fitness.values del child2.fitness.values for mutant in offspring: if random.random() < MUTPB: toolbox.mutate(mutant) del mutant.fitness.values # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit print " Evaluated %i individuals" % len(invalid_ind) # The population is entirely replaced by the offspring pop[:] = offspring # Gather all the fitnesses in one list and print the stats fits = [ind.fitness.values[0] for ind in pop] length = len(pop) mean = sum(fits) / length sum2 = sum(x*x for x in fits) std = abs(sum2 / length - mean**2)**0.5 print " Min %s" % min(fits) print " Max %s" % max(fits) print " Avg %s" % mean print " Std %s" % std print "-- End of (successful) evolution --" best_ind = tools.selBest(pop, 1)[0] print "Best individual is %s, %s" % (best_ind, best_ind.fitness.values) if __name__ == "__main__": main()